加工件工件时,机床应该使用单步工作状态进行试切削。当机床程序每调用一个新的刀具或者砂轮时应该先进行对刀,检查程序动作是否正确。 工件加工时尽量采取一次装夹,完成工件加工;如果需要进行测量或者其他原因需要工件的二次装夹,那么就保证次装夹与次装夹的定位和加工基准的统一。如果采取机床的自动定位装置,那么需要保持自动测量系统的测量速度一致性。在对工件的加工精度进行检测时,好能够在机床上完成,这样可以减少二次装夹的定位误差。另外,机床在加工工件的某些部位,其尺寸公差的精度要求较高时,操作者在每次加工完成后,都需要进行精度检查,检查合格后再去加工工件下一个的位置;如果工件上某个部位的形状是由两个或者多个方向加工合成的,那么每个方向的加工都会影响该部位形状的位置或者形状的公差,那么加工时应先加工对工件精度影响较小的一个方向,然后再加工工件公差要求较高的方向,后反复加工,后逼近所要求的精度。如果在机床上使用标准的测量仪器不能对工件进行测量,同时又不能把工件从机床上取下进行测量,否则影响工件的加工精度,那么可以使用特殊的卡规、塞规、量规等手段来检测,如果机床本身软件带有测量功能,那么可以使用机床本身来测量工件。在完成整个工件的加工后,再对工件进行全面的检测。 对于成批量工件的加工。当初次程序调试完成后,那么需要优化加工程序。优化的基本原则如下:保证加工质量的前提,优化切削参数,譬如工进速度、刀具或砂轮转速、横向进给量,加工深度等等;优化加工步骤,优化加工基准,提高加工效率,使用高寿命刀具或砂轮,减少换刀次数或者砂轮修正次数;建立合理的加工程序的数学模型,编辑有效可靠程序,合理设置粗精加工的余量和次数和使用适当的成型刀具或者砂轮,对于提,保证加工质量具具有较为显著的效果。 数控机床中的伺服体系替代了传统机床的机械传动,这是数控机床重要特征之一。因为伺服体系包含了很多的电子电力器材,并使用反应操控原理将它们有机地组织起来,因此在必定意义上,伺服体系的。苟功能和驱动体系与CNC方位操控有些构成方位伺服体系。伺服体系假如离开了高梢度的方位检查设备,就满意不了数控机床的要求。数控机床的驱动体系要有两种,进给驱动体系和主轴驱动体系。从效果看,前者是操控机床各坐标的进给运动,后者是操控机床主轴旋转运动。驱动体系的功能,在较大程度上决议了现代数控机床的功能。