1.润宇科技有限公司坐落于交通便利的,是一家长期致力于具有发展前景的高可用存储、全自动深度学习存储、服务好质量好的GPU服务器、啥是分布式文件系统为一体的高新技术企业。自2019-06-25成立以来,润宇科技一直营造“众诚思远,有容乃大”的企业文化,创造性的经营理念,形成独有的企业运营机制。厚重的企业文化和良好的服务器存储品牌声誉,正致力于打造出更加成功的服务器存储,实现全面协调可持续发展!x6ce5a9n 2.在发展的过程中,润宇科技有限公司深切感受到成长与发展的艰辛。为此,润宇科技始终秉承“客户至上”的经营理念,把客户体验和客户价值作为衡量润宇科技工作的根本标准,坚持诚信经营,用心服务,专注专注于为广大用户提供贴心和优质的服务器存储服务。凭借良好的服务器存储口碑,雄厚的实力和热情周到的服务,润宇科技赢得了众多客户的信任和尊重。 延伸内容 在如今的时代,人工智能的技术已经开始使用在各行各业,例如人脸识别等计算机视觉技术已经开始广泛的使用在人们的日常生活中去,如果我们要自己去训练模型,首先我们需要的是寻找到数据集,因为深度学习的技术是需要有非常多的数据,其次最为重要的也就是“算力”,深度学习模型的训练需要基于强大算力平台。也就是GPU,深度学习的模型训练的过程中大量张量会在GPU上完成求导等计算梯度的运算,但是单单有GPU是不行的,还需要有CPU进行配合,甚至SSD固态硬盘,内存等多个问题组成,那么如何选择一台“性价比”较高的深度学习服务器呢?请看下面的解释:GPU:GPU(图像处理单元)也就是我们常说的显卡,GPU是整个深度学习服务器中最为重要的东西,一般的笔记本的显卡配置的都是GTX1060显卡,显存6G,可以用来执行一些简单的数据集,但是coco等大型数据集就不适合了,现在一般的深度学习服务器中主流选择的GTX1080ti,显存11G,RTX2080ti,显存11G,两个的显存很大,且性价比较高,同时为了提高训练的速度,个人推荐四块GTX1080ti,或者四块RTX2080TI最为合适。当然也有特殊情况,比如使用的数据集数据过大,造成GPU的显存溢出,可以选择更大显存的显卡,接下来是重点Teslav10016G/32G,或者RTX8000,48G显存。他们二者的区别在于具体的用途,Teslav100支持双精度训练,RTX8000仅仅支持单精度训练,双精度训练一般用于医学图像上的目标检查或者分割,也就是要求极其严格的领域,除此之外均不需要双精度。另外根据BP反向传播算法的原理,Batchsize越大,测到的梯度越是准确,因此大显存使用推荐RTX8000显卡,另外比较一下显卡的散热方式,显卡在运行时会出现对大量的热,散热方式尤其重要,Teslav100为被动散热的风扇散热,噪音较大,且风扇散热效果不好,造成显卡温度超过86℃,会使得GPU的主频下降,利用率减低,RTX8000为主动的涡轮散热,散热效果更好,噪音更小。CPU:CPU用于深度学习模型训练过程中的数据预处理与多卡训练的均值LOSS损失函数计算,因此CPU很有可能成为深度学习模型训练的瓶颈,因此需要使用较高的主频,考虑得到性价比,目标选择为6149与4125,二者参数分别为8核16进程3.2GHZ,16核32进程3.1GHZ,虽然主频降低0.1GHZ,但是核心数增大了一倍,因此6149更加具有性价比,除此之外,CPU分为正显版与正式版,一般来说,正显版指的是在CPU正式售出前的测试版,但是均是通过测试的,所以正显没有问题,CPU的铂金系列售价最为昂贵,不建议使用,CPU由于需要处理大量的运算,因此核心与主频不会都高,一般来说核心越多的,主频会降低,可以并行运算多线程,主频高的执行单个进程速度最快,根据目的选择。 3.一直以来,润宇科技有限公司秉持“诚信经营、质量求精、服务至善、创新发展”的宗旨,深知满足客户需求、创造客户需求是润宇科技经营的中心目标。为此,润宇科技密切关注深度学习服务器行业发展趋势,广纳社会英才,与各方开展广泛合作,注重培养企业文化,积极承担社会责任,与各方共享高可用存储行业发展成果。润宇科技上网行为真诚欢迎各界朋友洽谈考察,共商合作,共创明日辉煌!更多合作意向洽谈,敬请拨打热线:-,或访问我们的官网:!