供应HPD1000-PCM2000-A 温州新上城
2.3 对电容器和电缆的影响
在谐波电压作用下,使电容器产生额外的功率损耗。电容器对供电系统其它部分产生串联、并联谐振,可能发生危险的过电压及过电流,这往往引起电容器熔丝熔断或使电容器损坏。在谐波电压作用下,电缆的介质损耗也增加。使电力电缆绝缘损坏,电缆发生单相接地故障的次数明显增加。
2.4 对断路器运行的影响
谐波含量较多的电流将使断路器的遮断能力降低。当存在严重的谐波电流时,某些断路器的磁吹线圈不能正常工作。
2.5 对输电线的影响
当谐波电流流过输电线(电缆)时,导线的直径愈大,因集肤效应而使谐波频率下的电阻增大,谐波产生的附加损耗也愈大,同时引起无功功率增大,功率因数下降。
2.6 严重干扰感应式电能表计
在畸变电源供线性负荷时,电能表记录的是基波电能及部分谐波电能,后者将使得用电设备性能变坏,因此用户不但多交电费,而且受到损害。
3. 谐波污染造成煤矿安全存在隐患
煤矿提升机较普遍地采用晶闸管供电的直流拖动,称为提升机晶闸管电控系统(SCR—D)。晶闸管电控系统具有调速平稳准确、效率高、容易维护、可引入计算机监控等优点。由于晶闸管变流器采用相切控制方式调节电压或电流,使电网正弦电压波形受到切割,并由此产生谐波电流,导致供电电网电压波形畸变。SCR—D系统在整个运行期间功率因数偏低(一般在0.02~0.8之间),同时起动无功冲击大,引起电网电压发生波动,尤其对于矿井提升机这类大功率负载频繁起动,无功冲击导致电网电压产生波动,对井上下电气设备产生严重干扰。
现代化的煤矿选煤厂也是谐波源负荷占总负荷比例最大的用户。选煤厂大量采用整流供电的渣浆泵、真空泵、压风机、振动筛等这些非线性电气设备。为了节约电能,部分设备均大量使用晶闸管,而高次谐波问题又使电路的功率因数下降,造成选煤厂电气元件及设备的故障和损坏。
煤矿用的通风机是重要的耗电设备。煤矿开采遵循以风定产的要求,有多大风量就允许有多大开采量,风量随着煤的产量增加而增加。在采煤作业中瓦斯随着煤的开采不断涌出,涌出瓦斯与煤的开采量成正比,而保障每个煤矿工人正常工作所需的新鲜空气也与煤的开采量成正比。因此为了煤矿生产安全,所需风量、风压随着开采和掘进的不断延伸,巷道延长,以及开采量的增加而增加,通风机需用的功率也随之增加。通风机的耗电量往往占到生产电耗的15%~25%,因此也采用变频调速技术进行节能改造。但高次谐波污染可能造成设备故障和损坏,危及人身安全和生产任务的顺利完成,高次谐波的消除刻不容缓。
4.高次谐波污染的消除
4.1 谐波补偿装置
如图1所示为选煤厂供电采用的谐波补偿装置。
该补偿滤波装置存在如下问题:当大型电机停止运行时投入H5(250Hz),功率因数为cosφ= 0.94;当大型电机运行时,功率因数急剧下降为cosφ=0.9,此时出现欠补(滞后运行)。当大型电机停止运行时,投入H7(350Hz),功率因数超前,cosφ=0.94;当大型电机运行时功率因数滞后,cosφ= 0.9,这种运行方式不能采用,因为过补易发生谐振过电压。
4.2 谐波保护装置PCMHPD
上海沈电电气公司推出的PCMHPD(Harmonic Protective Device)谐波保护器是针对越来越恶劣的电能质量,为用电设备提供谐波保护的设备。PCMHPD谐波保护器采用了超微晶合金材料与创新科技的特别电路,对用电设备产生的随机高次谐波和高频噪声、脉冲尖峰、电涌等干扰具有抑制和吸收作用;随时跟踪电压波形,瞬时滤除电源中的尖峰、浪涌(雷电)、杂波,矫正因谐波影响而产生畸变的电压波形;对噪声进行消化并把被吸收的噪声能量部分返回到电网中以矫正电网波形,使电网电源波形变得光滑清洁,既提高了电网质量,又保证了仪器设备的正常运行。
采用PCMHPD谐波保护器解决了设备遇到的众多问题:
自动保护用电设备
由于设备自身产生的接地电流在设备和真实地之间会引发一个电压降,当噪声频率比较高的时候,很容易造成计算机电子设备、PLC、电机电器等电脑死机。
PCMHPD能自动消除具有破坏性的高次谐波,高频噪声、浪涌、尖峰瞬变等,确保了用电设备的使用寿命。
4.2.2 净化电源
PCMHPD谐波保护器具有很强的抑制和消除能力,最高可消除99%的因各种谐波引起的电压、电流的畸变,防止谐波引发的计算机屏幕频闪,以及由于开关、短路、负载变化引起的灯光频闪。
4.2.3 保护功率因数补偿设备
高次谐波频率可能和杂散的电网电感及功率因数补偿(PFC)设备组合的谐波频率形成并联谐振回路,谐振电路引起的谐波放大使电压和电流波形畸变更为严重,从而导致设备过早出现故障。PCMHPD消除了谐波污染,确保了功率因数补偿设备的使用寿命。&nb