液压提升机的控制主要依靠操作人员来监控深度指示器和运行速度值,手动操作减压式比例控制阀,向液压泵输入液压控制信号,从而改变泵输出及输入液压马达的液压油流量和它的输出转速,实现对提升容器的位置控制。这种操作方式自动化水平低,因为司机手工操作存在的随意性、不精确性和操作速度的不可重复性,影响提升机的准确平稳运行。 特别是在减速段,虽然提升机容器实际位置变化不太大,但每次均不同,这样司机确定的减速点不完全相同,且减速度的控制完全由司机手动操作减压式比例控制阀确定,减速度变化大,进而造成停车点变化和停车时的冲击震荡,安全性差,人员乘坐的舒适性也很差。由于工作过程中,整个提升机都处于振动、噪声环境状态,司机很容易疲劳,严重影响司机的操作能力,危害提升机的运行安全。液压提升机采用的是变量泵控定量液压马达的容积式调速回路,导致液压提升机的可控性差,平层精度很低,冲击振荡显著,提升效率低。 这种调速方式是开环控制,马达的输出转速依靠系统的调节精度控制,无转速反馈。但因为在整个液压伺服控制系统中,诸如减压式比例阀和比例油缸等控制元件都存在较大的死区等非线性因素,液压泵、马达的容积效率也随系统的压力、油液粘度及温度等的变化而变化,加之液压油的可压缩性、管路的弹性、液压元件的泄漏等因素,从而使输入液压马达的流量不稳定,因此液压马达的输出动态参数根本难以得到精确控制;提升机的启动、加速、匀速和减速停车等不同阶段的控制只能仅凭司机手动操作控制,许多安全隐患也由此而生,如液压提升机的平层精度很低,难以满足规定的误差值(士50mm),提升容器的累积误差较大,并且要靠司机一次或多次微动操作才能使提升容器达到规定停靠位置,严重影响了提升效率。dinghengyeya