压铸是先进的金属成型方法之一,应用广,发展快。高压和高速充填是压铸的两大特点。由于压铸被广泛应用于生产复杂精密铸件,压铸模具有结构复杂、设计及制造工作量大、准备周期长的特点。而缩孔缩松及气孔是压铸件最为常见的缺陷,也是导致压铸件报废的主要因素。因此,需要研究压铸件,特别是复杂、薄壁压铸件的铸造缺陷形成机理,预测其缩孔缩松以及气孔的形成,以便通过改进压铸件和压铸模的设计,优化压铸工艺来避免缺陷的产生。在试制铝合金压铸汽车零件过程中,引入计算机模拟技术用于充型过程的预测与缺陷的预防,可实现压铸工艺系统的优化设计。 支架压铸件凝固过程的温度场分布。由于压铸充填型腔的整个过程时间极短,到0.5s时铸件已经开始凝固,进入固液共存的温度区间。当冷却到25s时,铸件整体温度降至固相线温度以下,说明铸件已经凝固成形。然而从铸件的凝固状态中可看出,铸件中厚大部位交其薄壁区域温度要高,这些区域在凝固过程中散热缓慢,通常为然后凝固的地方,也是最易出现铸造缺陷的区域。由于铸件在凝固过程中温度分布是一个动态的非均匀分布,并且对微观组织、宏观偏析、缩孔缩松具有很重要的影响。从支架压铸件铸造缺陷预测结果中可以看出,在铸件的溢流槽部位存在着不同程度的缩孔缩松,说明溢流槽的位置设计较为合理,但与此同时,铸件中厚大部位缩孔缩松依然十分明显。通常将铸件中缩孔缩松降低到较低程度的方法有两种:一是修改铸铝件浇注系统及其模具结构,但费时且消耗大量财力、人力;二是改变铸件的成形工艺,本文对支架压铸件浇注速度和浇注温度进行模拟分析,研究成形工艺对该铸件铸造缺陷的影响。 铸铝件的缺陷主要特征是裂纹 1.铸造裂纹:是一种在较高温度下形成的裂纹。在铸件体积收缩较大热膨张系数较大情况下容易出现。 2.热处理裂纹:由于热处理过烧或过热引起,常呈穿晶裂纹。btdongsheng/products/132.html